Evolutionary q-Gaussian Radial Basis Functions for Binary-Classification

نویسندگان

  • Francisco Fernández-Navarro
  • César Hervás-Martínez
  • Pedro Antonio Gutiérrez
  • Manuel Cruz-Ramírez
  • Mariano Carbonero-Ruz
چکیده

This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop+ algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with eleven datasets, taken from the UCI repository is presented. The RBFNN with the q-Gaussian is compared to RBFNN with Gaussian, Cauchy and Inverse Multiquadratic RBFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification

A classification problem is a decision-making task that many researchers have studied. A number of techniques have been proposed to perform binary classification. Neural networks are one of the artificial intelligence techniques that has had the most successful results when applied to this problem. Our proposal is the use of q-Gaussian Radial Basis Function Neural Networks (q-Gaussian RBFNNs). ...

متن کامل

Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection

This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop+ algorithm as the local improvement procedure. In order to test its overall performance, an experimental study wit...

متن کامل

Evolutionary q-Gaussian Radial Basis Function Neural Network to determine the microbial growth/no growth interface of Staphylococcus aureus

In this paper, q-Gaussian Radial Basis Functions are presented as an alternative to Gaussian Radial Basis Function. This model is based on q-Gaussian distribution, which parametrizes the Gaussian distribution by adding a new parameter q. The q-Gaussian Radial Basis Function allows different Radial Basis Functions to be represented by updating the new parameter q. For example, when the q-Gaussia...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010